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Abstract. Based on the variational-cumulant expansion (VCE), a new approach is adopted to determine
the critical couplings for the deconfinement phase transition in SU(2) gauge theory for Nτ = 2, 3, 4, and
with both the standard Wilson action and the improved tree-level Symansik action. New results of the
VCE which are close to the data of Monte Carlo (MC) simulations make manifest that the new approach
is much more effective than the traditional one and show the consistence of a VCE analysis with an MC
simulation.

1 Introduction

The most powerful technique in order to extract informa-
tion from QCD in lattice gauge theory is the Monte Carlo
approach. This has produced over the past twenty years
an imposing amount of results. Yet, in spite of two decades
of efforts the mechanisms of QCD are still not clear. It is
our belief that in some respects insight in the QCD can-
not be achieved without developing, in strict connection
with the MC approach, an analytic lattice approach. In
this way information coming from the MC can be used in
the examination of the analytic approach and be a crite-
rion thereby, and vice versa the analytic analysis is the
source of and a complement to MC calculations. For in-
stance, in lattice gauge theory the continuum limit can-
not be completely recovered due to system errors. As the
lattice spacing a → 0, the cost of a realistic simulation of
QCD will grow like some large power, a−6 or even a−10 [1,
2]. Symanzik’s improvement program, as an analytic lat-
tice theory, is designed to systematically reduce the cutoff
dependence near the continuum limit and has been proved
to be effective. In addition, by making use of a strong-
coupling expansion, Polyakov and Susskind have shown
that the deconfinement phase transition at a finite tem-
perature for lattice QCD is indicated by the Polyakov line
[3]. This analysis was later confirmed by many MC simula-
tions [4–6]; the VCE method as well as the strong-coupling
expansion has been confirmed as an effective analytical
method both at zero [7,8] and finite temperature [9]. In
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this paper, based on SU(2)’s similarity to QCD and its
simplicity, we present a new method in order to improve
the determination of the critical coupling based on the
VCE method for the SU(2) gauge model with Nτ = 2, 3, 4.
The results, which are rather better than those obtained
by the traditional method and which are close to the data
of MC, indicate the convergence of the cumulant expan-
sion of the Polyakov line for the SU(2) gauge model and
make manifest the consistence of a VCE analysis with an
MC calculation.

2 SU(2) lattice gauge models
in VCE at finite temperature

Consider the SU(2) lattice gauge theory on a D-dimen-
sional virtual hypercubic lattice, Λ = (NτAτ )×
(NσAσ)D−1, where (NτAτ ) is the time-like length while
(NσAσ)D−1 is the “space” volume. At finite temperature,
we apply the periodic boundary condition in the time-
like direction. The temperature is defined as T = 1/NτAτ

(Nτ = 2, 3, 4). Theoretically, there is no limit for Nσ in the
VCE method. Effectively, because of the finite expansion
order, the actual effective Nσ will be finite. The action of
the SU(2) system is

S =
β

2
(1)

×
{
C0

[∑
Pσ

tr(UPσ + U†
Pσ
) +

∑
Pτ

tr(UPτ + U†
Pτ
)

]
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Fig. 1. Wilson loops in the improved action

+ C1

[∑
Rσ

tr(URσ + U†
Rσ

) +
∑
Rτ

tr(URτ + U†
Rτ

)

]}

with {
C0 = 1, C1 = 0, (Wilson action)
C0 = 5

3 , C1 = − 1
12 , (Symanzik action)

(2)

where UP denotes the usual plaquette, and UPσ is an or-
dered product of Ul ∈ SU(2) on space-like links around
a plaquette, and UPτ is an ordered product including Ul

on time-like links. Similarly UR indicates the product of
link variables about a planar 2×1 rectangular loop. These
terms are depicted in Fig. 1. The summations Pσ,Pτ and
Rσ,Rτ are taken over all these loops; β = 4/g2.

Consequently, the partition function is

Z =
∫
[dU ]eS = e−NF , (3)

whereN = ND−1
σ Nτ is the total number of sites while F is

the free energy per site. The periodic boundary condition
of the field is

Uµ(x, 0) = Uµ(x, β). (4)

We introduce the trial action

S0 = J
∑

σ

trUσ +K
∑

τ

trUτ , (5)

where Uσ and Uτ are SU(2) matrices defined on space-like
and time-like links. J and K are two variational parame-
ters which will be determined later. Correspondingly, the
partition function Z0 of the trial system is

Z0 =
∫
[dU ]eS0 =

[
I1(2J)

J

]Ns
[
I1(2K)

K

]Nt

≡ [f(J)]Ns [f(K)]Nt , (6)

which can be calculated exactly, where Ns = (D − 1)
N

(D−1)
σ Nτ and Nt = N

(D−1)
σ Nτ are the total number of

space-like and time-like links, respectively.
The variational-cumulant approach takes the first step

by using Z0, instead of Z, to approach a physical quanti-
ties through a cumulant expansion. For instance,

Z =
∫
[dU ]eS−S0eS0 = Z0〈eS−S0〉0

= Z0 exp

[ ∞∑
n=1

1
n!

〈(S − S0)n〉c

]
, (7)

where
〈x〉0 =

∫
[dU ]xeS0 , (8)

is the ordinary statistical average of x. As a consequence,
any thermodynamic quantityO can be expanded and com-
puted order by order:

〈O〉 = 〈O〉0 +
∞∑

n=1

1
n!

〈(S − S0)nO〉c. (9)

3 Polyakov line
in variational-cumulant expansion

In the lattice space the Polyakov line is defined as

L(x) =
1
N
tr

Nτ∏
i=1

U(x, τi) (10)

and

〈L(x)〉 = e−β(Fq−F0)

{
= 0, (Confinement)
�= 0, (Deconfinement)

where Fq is the free energy of the quark and anti-quark
and F0 is the energy of the vacuum. Therefore 〈L(x)〉 = 0,
leading to an infinite quark energy, which corresponds to
the confinement phase, while 〈L(x)〉 �= 0 corresponding to
a deconfinement phase. Thus, the Polyakov line can make
manifest the deconfinement transition. Moreover, it is a
relatively simple function to be evaluated either by the
MC or VCE method. According to (9)

〈L〉 =
∞∑

m=0

Pm = 〈L〉0 +
∞∑

m=1

1
m

〈(S − S0)mL〉c. (11)

Since 〈L〉 cannot be exactly calculated from (11), the sum
must be truncated:

〈Ln〉 =
n∑

m=0

Pm = 〈L0〉 +
n∑

m=1

1
m

〈(S − S0)mL〉c. (12)

We make use of an identity in [9]:

〈X1 · · ·XnS
l
0〉c =

l∑
m=0

Cm
l

(
J l−m ∂l−m

∂J l−m

) (
Km ∂m

∂Km

)

× 〈X1 · · ·Xn〉c. (13)

Considering that only the cumulant averages of connected
diagrams are nonzero [10], the first three terms can be
explicitly expressed as

P0 = 〈L〉0, (14)

P1 = 〈LS〉c − K
∂

∂K
〈L〉0, (15)

P2 = 〈LS2〉c − 2
[
J

∂

∂J
+K

∂

∂K

]
〈LS〉c

+ K2 ∂2

∂K2 〈L〉0. (16)
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To abbreviate the expressions 〈LSn〉c we introduce a sys-
tem of diagrammatic notations. A vertical bar represents
an SU(2) matrix on a time-like link, and a horizontal bar
as well as an inclined bar represents a matrix on a space-
like link. A closed loop means a trace of an ordered prod-
uct of all matrices both on space-like and time-like links
on the loop. Then we have

〈L〉c =
1
2
〈L1,1〉0 = 〈|〉0, (17)

〈LS〉c =
β

4

3∑
i=1

C2,iα2,i〈L2,i〉c =
β

4

(
2rC0 〈 〉c

+ 2rC1 〈 〉c + rC1 〈 〉c + rC1 〈 〉c

)
. (18)

〈LS2〉c =
β2

8

44∑
i=1

C3,iα3,i〈L3,i〉c

=
β

8
(2rC2

0 〈L3,1〉c + 2rC2
1 〈L3,2〉c + · · ·) (19)

In the third order expansion there are 48 inequivalent di-
agrams, which are listed in Table 2. Cn,i is the product of
C0 and C1 of the plaquette and rectangle contained in the
ith diagram of the nth order. αn,i represents the number
of equivalent diagrams of the ith diagram in the nth or-
der. We have r = 2(D − 1), r0 = r − 1, ri = ri−1 − 1 for
i ≥ 1. 〈xn〉c which is the nth order cumulant expansion
average can be expressed through 〈Ln,i〉0 and all 〈Ll,i〉c

and 〈Dl,i〉c with l < n. For instance,

〈L1,1〉c = 〈L1,1〉0,
〈L2,2〉c = 〈L2,2〉0 − 〈L1,1〉0〈D1,5〉0,

〈L3,18〉c = 〈L3,18〉0 − 〈L1,1〉0〈D2,7〉c

− 〈D1,1〉0〈L2,2〉c − 〈D1,5〉0〈L2,1〉c

− 〈L1,1〉0〈D1,1〉0〈D1,5〉0. (20)

It should be noted that in spite of the periodic boundary
condition, the vertical rectangle has the same contribution
as that in the case with no periodic boundary condition.
For instance,

〈 〉0 = 〈 〉0 . (21)

After the truncation, 〈Ln〉 becomes dependent on the pa-
rameters J and K. A suitable set of parameters must be
determined.

4 Variational treatment

To determine the variational parameters, the usual main
variational approach [11] was adopted. From (3), using the
standard convexity inequality 〈ex〉0 ≥ exp〈x〉0, one gets

lnZ ≥ lnZ0 + 〈S − S0〉0. (22)

With F = − lnZ/N , one obtains an upper bound for the
free energy:

F ≤ Feff = F0 − 〈S − S0〉0 (23)
= −(D − 1) ln f(J) − ln f(K) − 〈S − S0〉0.

With the help of the identity (13) and only considering
the connected diagrams

〈S − S0〉0 =
5∑

i=1

C1,iα1,iNp1,i〈D1,i〉c − J
∂

∂J
lnZ0

= β
[
C0(D − 1)A2

2B
2
2 +

1
2
C0(D − 1)(D − 2)A4

2

+C1(D − 1)A4
2B

2
2 + C1(D − 1)(D − 2)A6

2

+C1(D − 1)A2
2B

4
2

]
+ 2(D − 1)JA2 + 2KB2, (24)

where An = In(2J)/I1(2J)Bn = In(2K)/I1(2K); In(x) is
the nth order modified Bessel function. α1,i = 1, Np1,i is
the total number of plaquettes for the ith diagram in the
first order, 〈D1,i〉c of these diagrams are listed in Table 2.
To improve the upper bound of the free energy, we choose
a gauge fixing in the x direction. Then (23) and (24) are
modified as

Feff = −(D − 2) ln f(J) − ln f(K) − 〈S − S0〉0 (25)

and

〈S − S0〉0 = β
[
C0(D − 2)A2

2B
2
2

+
1
2
C0(D − 2)(D − 3)A4

2 + C1(D − 2)A4
2B

2
2

+C1(D − 2)(D − 3)A6
2 + C1(D − 2)A2

2B
4
2

+C0B
2
2 + C0(D − 2)A2

2

+C1B
2
2 + C1B

4
2 + C1(D − 2)(A4

2 +A2
2)

]
+2(D − 2)JA2 + 2KB2. (26)

To find the minimum value of (25), we arrive at two sta-
tionary conditions with respect to J and K:

δFeff

δJ
= 0,

δFeff

δK
= 0, (27)

leading to

J = β
[
C0(D − 3)A3

2 (28)

+ C0A2B
2
2 + 3C1(D − 3)A5

2 + C0A2

+ C1(2A3
2 +A2) + 2C1A

3
2B

2
2 + C1A2B

4
2

]
,

K = β
[
C0(D − 2)A2

2B2 (29)

+ C1(D − 2)A4
2B2 + C1B2

+ C0B2 + 2C1(D − 2)A2
2B

3
2 + 2C1B

3
2

]
.

In fact, the solutions of (28) and (29) are satisfied with
the condition J = K and A2 = B2. These two equations
are the same as

J = β
[
C0(D − 2)A3

2 + 3C1(D − 2)A5
2

+ (C1 + C0)A2 + 2C1A
3
2

]
. (30)
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Fig. 2. 〈Ln〉, n = 1, 2, 3, 4, as a function of β for Nτ = 2 in
four dimensions for the SU(2) gauge system with the Wilson
action

From (30) and (12), one can solve Ln(β), the approximate
Polyakov line. According to the traditional treatment of
the VCE [9], the critical coupling βv = 1.61 in Fig. 2 is
determined by 〈L4(βv)〉 = 0. This is a good but not satis-
factory result compared with βc = 1.87 of the MC [4–6].
To improve the accuracy of βv, one needs to increase the
expansion order. However, it is hard to expand to an or-
der higher than the 4th due to limited machine power and
the difficulty of finding the large total number of inequiv-
alent diagrams by hand. This is the main reason for us to
search for a more effective mechanism to extract the criti-
cal behavior from the first several higher order expansion
terms.

For the third order expansion, (12) can be written in
the form of an expansion of β:

〈L3〉 = a(J)β2 + b(J)β + c(J), (31)

where a(J), b(J), c(J) are functions of J , For instance,
a(J) = (1/16)

∑44
i=1 α3,i〈L3,i〉c for Nτ = 2. We determine

the critical coupling first by choosing the value of Jv which
satisfies a(Jv) = 0. Then with the restriction of (30), the
critical coupling of the VCE is

βv = Jv

[
C0(D − 2)A3

2 + 3C1(D − 2)A5
2

+ (C1 + C0)A2 + 2C1A
3
2

]−1
. (32)

The reason why we take this avenue is the finite size effect.
Due to this effect, MC data cannot describe an ideal order
parameter like the fit line V in Figs. 2 and 3. If consider
the actual space size Nσ = 2 for the Wilson action, our
situation is similar to that of MC (line U in Fig. 2 [5,6]
and Fig. 3 [6,12]). Considering the finite size effect, one
may notice that on the line U there is a point of inflection
Q whose β is close to βc.

Presuming that the VCE can reflect the behavior of
the MC, we are able to determine the critical coupling
through the point of inflection:
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 fit of MC data

<L
n>

β

Fig. 3. 〈Ln〉, n = 1, 2, 3, as a function of β for Nτ = 2 in
four dimensions for the SU(2) gauge system with the Symanzik
action

Table 1. The critical coupling βv of the VCE (the third order)
compared with the βc of the MC (Wilson [4–6], Symanzik [6,
12]) for Nτ = 2, 3, 4

Nτ Wilson Symanzik
βv βc |βc − βv| βv βc |βc − βv|

2 2.00 1.87 0.13 1.37 1.38 0.01
3 2.40 2.20 0.20 1.63 1.60 0.03
4 2.50 2.29 0.21 1.696 1.699 0.004

∂2〈L3(β, J)〉
∂β2 = a(J) = 0. (33)

This restriction, which only gives the restriction of a spe-
cial point of (30), will not lead to contradictions. In order
to analyze 〈L3〉 we change (12) into an expansion in β:

〈Ln〉 = 〈L0〉 +
n−1∑
m=1

βmαm(J). (34)

As n is large enough and the expansion is convergent, the
finite size effect can be neglected. Given one value of J ,
〈Ln〉 should give an accurate approximation of the ideal
Polyakov line 〈L〉. Now our treatment is only up to the
third order. Whether 〈L3〉 can well reflect 〈L〉 depends on
the speed of convergence. Although no one has given the
general proof of the converge of the cumulant expansion,
the work of the SU(2) gauge model with the Wilson stan-
dard action at finite temperature [9] has yielded a good
result at the fourth order expansion. Since the finite size
effect cannot be neglected, it is expected that 〈L3〉 will
reflect the variation between concavity and convexity of
the line U within several expansions both for the Wilson
and Symanzik action, given one value of J . That is why we
use (33) to determine the critical coupling. This treatment
needs the examination of final results.
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Table 2. Elementary averages required for 〈Ln,i〉c in the first three terms both in the Wilson and the Symanzik action with
Nτ = 2

Ln;iin �n;i

1

2r

2r

2r

2r

2r

2r

8r

8r

2r

4r

2r

2r

4r

1 1

2 1

2

3

3 1

2

3

4

5

6

7

8

9

10

11

< Ln;i >0 n i < Ln;i > �n;i < Ln;i >

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

8rr1

12rr1

8rr1

8rr1

32rr1

2rr0

2rr0

4rr0

2rr0

8rr0

4rr0

2rr0

2rr0

2rr0

4rr0

2rr0

2

2

2

2B2

2

A2

2
B2

2
(1+3B3)

A2

2
B2

2
(1+3B3)

2B2[B2+A2

3
B3(B2+2B4)]

A4

2
B2

2
(1+3B3)

2B2[B2+A4

3
B3(B2+2B4)]

2[B2

2
+A2

3
B2

3
(B2

2
+2B2

4
)]

1

2
A4

2
B3

2
[B2(1+3B3+3A3+A3B3)

1

2
A4

2
B2

2
(1+3A2

3
)(1+3B2

3
)

2A2

2
B3

2
[B2+B2

2
(B2+2B4)]

1

2
A2

2
B2[B2(1+3A3+3B2

3
+A3B

2

3
)

1

2
A2

2
B2

2
(1+3B3)(1+3B3A

2

3
)

1

2
A4

2
B4

2
(1+3A2

3
)(1+3B3)

1

2
A2

2
B2

2
(1+3B3)(1+3B3A

2

3
)

1

2
A4

2
B2

2
(1+3A3)(1+3B3)

27

28

4rr0

2rr0
1

2
A6

2
B2

2
(1+3A3)(1+3B3)

1

2
A6

2
B2

2
(1+3A3)(1+3B3)

1

2
A6

2
B2

2
(1+3A2

3
)(1+3B3)

1

2
A8

2
B2

2
(1+3A3)(1+3B3)

4A4

2
B3

2
(B2+B4)

4A6

2
B3

2
(B2+B4)

4A4

2
B3

2
[B2+B3(B2+B4)]

4A8

2
B3

2
(B2+B4)

4A6

2
B3

2
[B2+B3(B2+B4)]

4A4

2
B4

2
(B2+B4)

1

2
A4

2
B2

2
(1+3B3)2

1

2
A6

2
B2

2
(1+3B3)2

1

2
A8

2
B2

2
(1+3B3)2

1

2
A4

2
B2

2
(1+3B3)2

1

2
A6

2
B2

2
(1+3B3)2

1

2
A4

2
B4

2
(1+3B3)2

1

2
A6

2
B2

2
(1+3B3)2

+8A3B3B4]

+8A3B3B4]

+
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5 Conclusions and discussions

Applying our approach to the Wilson action of the third
order, with Nτ = 2, we get βv = 2.0 which is closer to that
of the MC, βc = 1.87, than the traditional value of 1.61.
To make a further examination, one needs to calculate the
expansion up to the fourth or fifth order. However, a high
order expansion will include more complicated diagrams
and will require more computer power. The Symanzik pro-
gram is designed to avoid a similar situation in the MC
simulation. In the VCE, to expand the Symanzik action
to the third order approximates the expansion of the Wil-
son action to the fifth order because they have the same
Nσ = 4, while the calculation of the Symanzik case is rela-
tively simple. Using (33) on the improved Symanzik action
we obtain βv = 1.37. But the MC data give βc = 1.38. The
deviation has decreased to 0.01. Continuing this work, we
calculate the cases of Nτ = 3, 4 both with the Wilson
and the Symanzik action. The results, which are listed in
Table 1, are consistent with Nτ = 2.

The accurate results of the Symanzik action make
manifest that the cumulant expansion of the Polyakov line
for the SU(2) gauge is convergent and the new approach to
determine the critical coupling is applicable. In addition,
the tree-level improved Symanzik action is more effective
than the standard Wilson action in the VCE.

As a next step we plan to apply our approach to SU(3)
gauge theory, which is more significant for the study of
quark confinement.
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